Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves
نویسندگان
چکیده
The algebra of quantum matrices of a given size supports a rational torus action by automorphisms. It follows from work of Letzter and the first named author that to understand the prime and primitive spectra of this algebra, the first step is to understand the prime ideals that are invariant under the torus action. In this paper, we prove that a family of quantum minors is the set of all quantum minors that belong to a given torus-invariant prime ideal of a quantum matrix algebra if and only if the corresponding family of minors defines a non-empty totally nonnegative cell in the space of totally nonnegative real matrices of the appropriate size. As a corollary, we obtain explicit generating sets of quantum minors for the torus-invariant prime ideals of quantum matrices in the case where the quantisation parameter q is transcendental over Q.
منابع مشابه
Totally nonnegative cells and matrix Poisson varieties
We describe explicitly the admissible families of minors for the totally nonnegative cells of real matrices, that is, the families of minors that produce nonempty cells in the cell decompositions of spaces of totally nonnegative matrices introduced by A. Postnikov. In order to do this, we relate the totally nonnegative cells to torus orbits of symplectic leaves of the Poisson varieties of compl...
متن کاملA Classification of H-primes of Quantum Partial Flag Varieties
We classify the invariant prime ideals of a quantum partial flag variety under the action of the related maximal torus. As a result we construct a bijection between them and the torus orbits of symplectic leaves of the standard Poisson structure on the corresponding flag variety. It was previously shown by K. Goodearl and the author that the latter are precisely the Lusztig strata of the partia...
متن کاملDimension and enumeration of primitive ideals in quantum algebras
In this paper, we study the primitive ideals of quantum algebras supporting a rational torus action. We first prove a quantum analogue of a Theorem of Dixmier; namely, we show that the Gelfand-Kirillov dimension of primitive factors of various quantum algebras is always even. Next we give a combinatorial criterion for a prime ideal that is invariant under the torus action to be primitive. We us...
متن کاملPRIME IDEALS IN CERTAIN QUANTUM DETERMINANTAL RINGS K. R. Goodearl and T. H. Lenagan
The ideal I1 generated by the 2× 2 quantum minors in the coordinate algebra of quantum matrices, Oq(Mm,n(k)), is investigated. Analogues of the First and Second Fundamental Theorems of Invariant Theory are proved. In particular, it is shown that I1 is a completely prime ideal, that is, Oq(Mm,n(k))/I1 is an integral domain, and that Oq(Mm,n(k))/I1 is the ring of coinvariants of a coaction of k[x...
متن کاملM ay 2 00 1 Quantum solvable algebras . Ideals and representations at roots of 1
There proved that every prime invariant with respect to quantum adjoint action ideal I is completely prime and Fract(R/I) is isomorphic to the skew field of fractions of an algebra of twisted polynomials. We study correspondence between symplectic leaves and irreducible representations. The Conjecture of De Concini-KacProcesi on dimension of irreducible representations is proved for sufficientl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009